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Abstract

Aluminum nitride (AlN) thin films were deposited on Si (100) substrates by using plasma-enhanced atomic layer
deposition method (PEALD). Optimal PEALD parameters for AlN deposition were investigated. Under saturated
deposition conditions, the clearly resolved fringes are observed from X-ray reflectivity (XRR) measurements, showing
the perfectly smooth interface between the AlN film and Si (100). It is consistent with high-resolution image of the
sharp interface analyzed by transmission electron microscope (TEM). The highly uniform thickness throughout the
2-inch size AlN film with blue covered surface was determined by spectroscopic ellipsometry (SE). Grazing incident
X-ray diffraction (GIXRD) patterns indicate that the AlN films are polycrystalline with wurtzite structure and have a
tendency to form (002) preferential orientation with increasing of the thickness. The obtained AlN films could open
up a new approach of research in the use of AlN as the template to support gallium nitride (GaN) growth on
silicon substrates.
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Background
With a direct wide bandgap of 6.2 eV [1], high resistivity
and resistance of breakdown voltage, and good thermal
conductivity and stability [2], aluminum nitride (AlN) is
suitable for various applications, such as photodetectors,
ultraviolet light-emitting diodes, complementary metal-
oxide-semiconductor (CMOS), and solar cells. As we
know, low-temperature prepared AlN was used as a crit-
ical buffer layer for the growth of epitaxial gallium ni-
tride (GaN) layers on sapphire substrates [3–5], which
contributed to the development of GaN electronic and
optoelectronic devices. Since large and high-quality sili-
con wafers are readily available at relatively low cost,
AlN films grown on silicon substrates are highly desirable
and have the potential to develop GaN electronic and op-
toelectronic devices on silicon substrates in future. Re-
cently, ultrathin AlN films deposited at low temperatures
were widely applied for passivation layers on high electron
mobility transistors (HEMTs) by controlling their

thickness at atomic level [6–11]. Therefore, great efforts
have been carried out for fabricating high-quality AlN
growth at low temperature. It is well known that plasma-
enhanced atomic layer deposition (PEALD) is a low-
temperature growth method based on self-limiting growth
mechanism, which can deposit highly uniform and con-
formal angstrom-scale thin films. In the literatures, Alevli
et al. [12] fabricated polycrystalline AlN films using
PEALD, and the polar (002)-preferred orientation ap-
peared with increasing the temperature up to 400 °C.
Ozgit et al. [13] obtained (100)-oriented polycrystalline
AlN films on Si (100) substrates. Epitaxial growth of
(002)-oriented crystalline AlN films on GaN and sapphire
were achieved [14, 15]. However, high-quality (002)-pre-
ferred orientation AlN films on silicon substrates have not
been realized at low temperature up to now.
In this work, we have deposited polycrystalline hex-

agonal AlN films with (002) preferential orientation on
Si (100) substrates at temperature as low as 300 °C.
Interface between the AlN film and Si (100) has been in-
vestigated. AlN films with sharp interface and good uni-
formity are obtained.
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Methods
AlN thin films were deposited on Si (100) substrates
using an Angstrom-dep III PEALD reactor, Thin
Film Technologies Ltd. of USA, equipped with an
inductively coupled remote plasma (ICP) source.
After cleaned by RCA standard cleaning process, the
substrates are immediately loaded onto the reactor
chuck in the PEALD system and pumped down to
the system base pressure of ~0.15 Torr. Once reach-
ing the system base pressure, the substrate chuck is
heated resistively to the growth temperature. Upon
at deposition temperature, another 20 min is needed
for temperature to reach a balance. After that, the
substrate surfaces are treated with high-purity (HP)
Ar/N2/H2 (1:3:6) plasma to form NH groups,
followed by purging the chamber with HP Ar. Subse-
quently, HP trimethylaluminum (TMA) is introduced
separately for AlN growth. Unreacted TMA and by-
products are removed by purging the chamber with
HP Ar. Thus, each cycle of AlN growth consists of
Ar/N2/H2 plasma pulse/Ar purge/TMA pulse/Ar
purge. Table 1 summarizes the deposition conditions
of the AlN films by PEALD.
After deposition, the thickness and the optical con-

stants of AlN films were measured by spectroscopic

ellipsometer (SE) in the energy range of 1.5–4.5 eV at in-
cidence angle of 70°. X-ray reflectivity (XRR) with a
PANalytical system X-ray reflectometry was used to
study the interface between the films and substrates.
The crystallinity of the as-deposited AlN was analyzed
by grazing incidence X-ray diffraction (GIXRD) meas-
urement. The thickness, uniformity, and interface of the
as-deposited AlN films were further characterized by
transmission electron microscope (TEM).

Results and Discussion
Deposition rate, also called growth per cycle (GPC), as a
function of temperature is shown in Fig. 1a. It is obvious
that GPC decreases from 3.76 to 1.4 Å/cycle with the
temperature increases from 125 to 150 °C due to the
condensation of TMA. The value of GPC within the
temperature range of 150–300 °C is lower than the lit-
eral value of 2.5 Å/cycle [16], indicating a self-limited
growth process. When the deposition temperature is
above 300 °C, the GPC increases with the increase of
growth temperature due to the self-decomposition of
TMA molecules [17]. Hence, the temperature range of
150–300 °C is atomic layer deposition window for this
case, where the GPC varies with the deposition
temperature. This variation can be attributed to the ef-
fect of temperature on the number and type of reactive
sites present on the surface [18]. Figure 1b shows the
saturation curves of aluminum and nitrogen precursors
obtained at 300 °C. For the TMA saturation curve, GPC
increases with TMA dose until 0.05 s, where the depos-
ition rate saturates at ~2.18 Å/cycle. For the N2/H2

plasma saturation curve, GPC increases with increased
N2/H2 plasma pulse time until a constant deposition rate
is obtained at 15 s. The achieved deposition rate of
~2.18 Å/cycle is higher than the reported values of
PEALD-grown AlN [19–25] owing to the component of
our plasma Ar:H2:N2 (1:6:3) in this work. The H2:N2

Table 1 Deposition conditions of the AlN films by PEALD

Precursor 1 TMA (99.999%)

Precursor 2 Ar/N2/H2 (99.999%)

Carrier gas Ar (99.999%)

Gas line temperature 60 °C

Flow rate of carrier gas (UHP Ar) 5 sccm

Flow rate of N precursor 5 sccm

RF power 60 W

RF plasma frequency 13.56 MHz

Fig. 1 a Deposition rate of AlN thin films on Si (100) at different temperature. b Precursor saturation curves at 300 °C. Black square represents N2/H2

plasma that was kept constant at 30 s for TMA dose saturation curves. Black triangle represents N2/H2 plasma saturation curve with an optimal TMA
dose of 0.05 s
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ratio is sufficient for AlN deposition process [22] in
terms of the required N source. On the other hand, Ar
acts as an ignition providing plasma with enough energy
to overcome steric hindrance of methyl groups and
make more complete reducing reaction.
Based on the optimized PEALD parameters, the AlN

film was deposited on the 2-inch size Si (100) substrate
at 300 °C for 400 cycles. For this as-deposited AlN film,
no apparent interference fringes are observed under
naked eyes, implying the good uniformity in thickness
through the entire wafer. To verify the good uniformity
of this sample, seven schematic points in Fig. 2 were
measured by SE. The average thickness of the film is
86.6 nm figured out by using the results in Table 2. via
the equation

η ¼ d maxð Þ−d minð Þ
2d averageð Þ ;

where η and d are the non-uniformity and thickness of
the film, respectively, the non-uniformity η of around
1% is calculated, suggesting that the AlN nucleation on
Si (100) is highly uniform. Deposition of large-size uni-
form AlN films by PEALD at low temperatures broadens
application of AlN in the areas that require uniform
growth at low temperature with thickness controlled at
the atomic level.

Figure 3 shows the X-ray diffraction XRD patterns of
AlN thin films deposited at 300 °C with different thick-
ness. From XRD analysis, it can be observed that AlN
layers are polycrystalline. For the 87-nm-thick AlN film,
different diffraction peaks at 2θ value of 33.2°, 35.8°,
37.7°, 51.7°, 59.3°, 65.0°, and 71.0° are assigned to the
(100), (002), (101), (102), (110), (103), and (112) planes
of hexagonal AlN, respectively, based on the PDF card
(no: 01-080-6097). AlN films display a higher degree of
crystallization with increasing of thickness. For the 20-
nm-thick AlN, only the (102) peak is evident. When the
thickness is increased to 52 nm, peaks for (100), (002),
(101), (102), and (110) planes can be found in the XRD
patterns. The (002) preferential orientation appears as
the thickness increases to 87 nm, indicating that AlN
films promote crystallization in (002) plane with increas-
ing of thickness. Consequently, epitaxial growth of
(002)-oriented AlN is feasible by improving the film
thickness to a certain value. As we know, raising the
process temperature is conductive to the formation of

Fig. 2 Schematic points for the thickness measurement of
AlN/Si (100)

Table 2 The extracted thickness of the 2-inch size AlN film at
different points

Thickness/nm 86.1 86.5 86.8 86.7 87.0 86.8 86.5

Points 1 2 3 4 5 6 7

Fig. 3 GIXRD patterns for different thick AlN films on Si (100)
at 300 °C

Fig. 4 Optical constants (refractive index and extinction coefficient)
of the 87-nm AlN thin film
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single-crystalline structure. Hence, increasing both of
the thickness of AlN films and deposition temperature
of PEALD process might suppress the polycrystalline na-
ture of the film and form a single-crystalline AlN by
PEALD on silicon substrate, and we will make further
efforts to study about it in the future.

The optical performance of the 87-nm-thick AlN film
is analyzed in Fig. 4. Refractive index (n) decreases from
2.20 to 1.96 with increasing wavelength from 275 to
826 nm. The value of n at 632 nm is 1.97, which is con-
sistent with the value reported by Barshilia et al. [26].
The extinction coefficient (k), which is 0.002 at 275 nm,
decreases rapidly within the wavelength range of 275–
300 nm. For higher wavelengths k is zero, indicating that
films are transparent above 300 nm in wavelength,
which is a red shift as compared with the band-edge
wavelength of single-crystalline AlN. This feature might
widen the utilization of AlN films as a window in solar
photovoltaic technology.
It is well known that the interface between AlN passiv-

ation layer and III-nitride surface is crucial for the re-
duction of the current collapse in AlGaN/GaN HEMTs
[7]. The clearly resolved fringes from XRR measurement
in Fig. 5 reveal that the interface between the AlN film
and Si (100) is perfectly smooth. The film thickness of
around 87 nm can be obtained using a fit to the experi-
mental curve (not shown here), which is in good agree-
ment with the thickness measured by TEM as shown in
Fig. 6a. Inset of Fig. 6a shows that the film is highly
uniform, verifying the good uniformity measured by SE.
Figure 6b is the high-resolution TEM (HR-TEM) image

Fig. 5 XRR measurement of the 87-nm AlN thin film

Fig. 6 Cross-sectional TEM images of the 87-nm AlN thin film. a Cross-sectional TEM image and (inset) lower magnification cross-sectional TEM
image. b Cross-sectional HR-TEM image of the same sample and (inset) SAED pattern of Si (100) substrate. c SAED pattern of the same sample.
d Cross-sectional HR-TEM image and (inset) magnification of the selected square area

Liu et al. Nanoscale Research Letters  (2017) 12:279 Page 4 of 6



of the same sample. The sharp interface is observed be-
tween the as-deposited AlN and Si (100) consistent with
the results of XRR as shown in Fig. 5. This image also
shows that the AlN is amorphous at the initial thickness
of ~5 nm and then starts to crystallize. A hexagonal lat-
tice structure is shown in the corresponding selected-
area electron diffraction (SAED) pattern (Fig. 6c), which
confirms the results made by GIXRD. With the increase
of film thickness, AlN gradually exhibits a preferred
orientation, as presented in Fig. 6d. Inset of Fig. 6d is a
magnification of the square area, the distance for ten lat-
tice planes of which is measured as 2.524 nm, corre-
sponding to the (002) plane of hexagonal AlN materials.
From both XRR measurements and HR-TEM images,
we can conclude that the AlN films deposited on Si
(100) substrates have sharp interface. This feature of
sharp interface between as-deposited AlN and Si (100)
could benefit for the deposition of the passivation layer
or the window layer as a conformal way.

Conclusions
In summary, polycrystalline hexagonal AlN films with
sharp interface and good uniformity have been deposited
on Si (100) at 300 °C by PEALD. Increasing the thick-
ness of AlN films promotes crystallization in (002)
orientation. AlN films exhibit a high transparency in the
visible region of the spectrum, which can be utilized in
solar photovoltaic technology. The achieved AlN films
are not only potential buffer layer materials for GaN
growth but also promising materials for applications in
other microelectronic and optoelectronic devices.
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